Erfolgreiches Vibe Coding in der Anwendung

Was ist Vibe Coding: Programmieren im Dialog mit kiinstlicher Intelligenz

Softwareentwicklung galt lange als hochspezialisierte Tatigkeit, die tiefgehende Kenntnisse
von Programmiersprachen, Systemarchitekturen und technischen Standards voraussetzt.
Entwickler iibersetzten Anforderungen in komplexe Code-Strukturen, testeten diese manuell
und optimierten sie Schritt fiir Schritt. Dieser klassische Ansatz prigt bis heute grof3e Teile
der IT-Branche. Doch mit dem Aufkommen leistungsfahiger KI-Systeme entsteht derzeit ein
neues Entwicklungsmodell: das sogenannte Vibe Coding.

Der Begriff beschreibt eine Form der Softwareentwicklung, bei der Programmcode nicht
mehr ausschlieBlich manuell geschrieben wird, sondern im Dialog zwischen Mensch und
kiinstlicher Intelligenz entsteht. Der Anwender formuliert dabei weniger technische
Losungen, sondern beschreibt zunichst Ziele, Anforderungen und gewiinschte Funktionen in
natiirlicher Sprache. Die Kl interpretiert diese Vorgaben und generiert daraus Programmcode,
Datenmodelle oder komplette Analyseprozesse.

Vibe Coding verdndert damit die Rolle des Entwicklers grundlegend. Statt jede Codezeile
selbst zu erstellen, iibernimmt der Mensch zunehmend die Funktion eines Architekten und
Konzeptgestalters. Er definiert Problemstellungen, Bewertungslogiken oder
Geschiftsprozesse, wihrend die KI die technische Umsetzung unterstiitzt oder teilweise
automatisiert.

Der Begriff ,,Vibe* verweist dabei auf die Idee, dass Software nicht mehr ausschlieBlich aus
formalen Anweisungen entsteht, sondern aus einer Mischung aus Zielvorstellungen, Intuition
und fachlicher Logik. Der Entwickler beschreibt die ,,Richtung® oder ,,Stimmung* der
Anwendung, wéhrend die KI daraus konkrete technische Losungen ableitet. Dieser
dialogbasierte Entwicklungsprozess dhnelt weniger klassischer Programmierung als vielmehr
einer Zusammenarbeit zwischen Fachanwender und technischem Assistenten.

Besonders sichtbar wird dieser Wandel in datengetriebenen Anwendungen. In vielen Analyse-
oder Automatisierungsprojekten liegt der entscheidende Mehrwert nicht im Programmcode
selbst, sondern in der fachlichen Bewertungslogik. Anwender definieren beispielsweise
Kennzahlensysteme, Risikomodelle oder Entscheidungsstrukturen, wahrend KI-Systeme diese
Vorgaben in Softwareprozesse iibersetzen. Dadurch verschiebt sich der Schwerpunkt der
Softwareentwicklung von technischer Implementierung hin zu konzeptioneller Modellierung.

Vibe Coding steht damit exemplarisch fiir eine breitere Transformation der digitalen
Arbeitswelt. Softwareentwicklung wird zunehmend zugénglicher fiir Fachanwender, wiahrend
klassische Entwickler stirker strategische und qualititssichernde Aufgaben {ibernechmen.
Gleichzeitig entstehen neue Anforderungen an Kontrolle, Validierung und
Sicherheitspriifung, da KI-generierter Code iiberzeugend wirken kann, ohne zwangslaufig
fehlerfrei zu sein.

Trotz dieser Herausforderungen zeigt sich bereits heute, dass Vibe Coding
Entwicklungsprozesse erheblich beschleunigen und neue Formen der Zusammenarbeit
ermoglichen kann. Software entsteht nicht mehr ausschlielich durch Programmierung im
traditionellen Sinn, sondern durch einen kontinuierlichen Dialog zwischen menschlicher
Expertise und maschineller Umsetzungskompetenz.



Wie strukturierte Prompts aus Ideen funktionierende Software machen

Der entscheidende Erfolgsfaktor beim Vibe Coding ist nicht die KI selbst, sondern die
Qualitit der Kommunikation zwischen Mensch und Maschine. Wahrend klassische
Programmierung auf formalen Programmiersprachen basiert, entsteht Software beim Vibe
Coding aus einem dialogbasierten Entwicklungsprozess. Der Nutzer beschreibt Ziele,
Anforderungen und Rahmenbedingungen, wihrend die KI daraus Code und
Softwarearchitektur generiert.

In der Praxis zeigt sich jedoch schnell, dass unscharfe oder unvollstindige Anweisungen
hiufig zu unzureichenden Ergebnissen fithren. Wer Vibe Coding erfolgreich nutzen mochte,
sollte deshalb lernen, Anforderungen strukturiert und nachvollziehbar zu formulieren. Eine
klare Promptstruktur wirkt dabei wie ein Bauplan fiir die spétere Software.

Der erste Schritt: Das Problem verstiandlich formulieren

Viele Anwender beginnen Vibe Coding mit einer rein technischen Fragestellung. In der Praxis
fiihrt dieser Ansatz oft zu fragmentiertem Code ohne klare Zielrichtung. Erfolgreicher ist es,
zunichst das eigentliche Problem oder den gewiinschten Nutzen zu beschreiben.

Dabei sollte man sich bewusst fragen, welche Aufgabe die Software 16sen soll und welchen
Mehrwert sie fiir den Nutzer erzeugen soll. Eine solche Zielbeschreibung zwingt dazu,
fachliche Anforderungen von technischen Details zu trennen. Gleichzeitig erhilt die KI ein
klares Verstdndnis des Anwendungskontextes.

Ein typisches Beispiel aus datengetriebenen Analyseprojekten wére die Beschreibung eines
Tools, das Unternehmensdaten aus verschiedenen Quellen zusammenfiihrt, Kennzahlen
berechnet und daraus strukturierte Entscheidungsgrundlagen ableitet. Entscheidend ist dabei
nicht die Wahl der Programmiersprache, sondern die Klarheit tiber den Zweck der
Anwendung.

Der zweite Schritt: Den Nutzungskontext definieren

Nachdem das Ziel beschrieben wurde, sollte der Einsatzbereich mdglichst konkret dargestellt
werden. Dieser Kontext hilft der KI, Priorititen zu setzen und passende Losungsansitze zu
entwickeln.

Besonders hilfreich ist es, die Zielgruppe der Anwendung, typische Nutzungsszenarien und
mogliche Datenquellen zu beschreiben. Software flir wissenschaftliche Analysen stellt
beispielsweise andere Anforderungen als ein Tool fiir betriebswirtschaftliche
Entscheidungsprozesse oder automatisierte Berichterstellung.

Gerade bei komplexeren Analyseprojekten zeigt sich, dass KI-Systeme deutlich bessere
Ergebnisse liefern, wenn sie den fachlichen Hintergrund verstehen. Anwendungen, die Daten
analysieren oder bewerten sollen, profitieren besonders von einer klar formulierten fachlichen
Logik.



Der dritte Schritt: Funktionen und Arbeitsschritte festlegen

Erst nach Zielbeschreibung und Kontextdefinition sollten konkrete Funktionsanforderungen
formuliert werden. Diese sollten moglichst klar und in logisch nachvollziehbarer Reihenfolge
beschrieben werden.

Hilfreich ist es, die geplanten Funktionen entlang eines Arbeitsprozesses zu strukturieren.
Eine typische Struktur kdnnte beispielsweise vorsehen, dass Daten eingelesen, gepriift,
verarbeitet, ausgewertet und schlieBlich visualisiert werden. Durch diese prozessorientierte
Beschreibung kann die KI leichter modulare Softwarearchitekturen entwickeln.

In datengetriebenen Analyseprojekten lassen sich hdufig auch Bewertungs- oder Scoring-
Modelle integrieren. Hier definiert der Anwender beispielsweise, welche Kennzahlen relevant
sind, wie Risiken bewertet werden und welche Kriterien zur Entscheidungsfindung
herangezogen werden sollen. Die KI iibernimmt anschlieBend die technische Umsetzung
dieser Logik.

Der vierte Schritt: Technische Rahmenbedingungen vorgeben

Obwohl Vibe Coding stark auf natiirliche Sprache setzt, bleiben technische Vorgaben
weiterhin wichtig. Dazu gehdren Programmiersprachen, Bibliotheken,
Entwicklungsumgebungen oder Integrationsanforderungen.

Besonders bei Projekten, die spéter erweitert oder in bestehende Systeme integriert werden
sollen, empfiehlt es sich, modulare Strukturen und dokumentierten Code einzufordern. Dies
erleichtert Wartung, Erweiterung und Zusammenarbeit mit anderen Entwicklern.

Der fiinfte Schritt: Qualitits- und Priifanforderungen definieren

Ein héufiger Fehler beim Vibe Coding besteht darin, sich ausschlieBlich auf funktionierende
Ergebnisse zu konzentrieren. Nachhaltige Softwareentwicklung erfordert jedoch zusitzliche
Qualititskontrollen.

Dazu gehoren Plausibilitdtspriifungen von Eingabedaten, Fehlermeldungen bei inkonsistenten
Datensitzen und automatisierte Testfille zur Uberpriifung von Berechnungslogiken.
Besonders in Analyse- und Bewertungsanwendungen kann dieser Schritt entscheidend sein,
um Fehlinterpretationen oder falsche Entscheidungsgrundlagen zu vermeiden.



Der sechste Schritt: Den Entwicklungsdialog bewusst offen halten

Der Entwicklungsdialog beginnt hdufig mit einem ersten funktionierenden Prototypen. Dieser
erflillt zwar grundlegende Anforderungen, enthélt aber oft noch ineffiziente Algorithmen,
unvollstindige Datenpriifungen oder unklare Architekturentscheidungen. Statt den Code
sofort produktiv einzusetzen, empfiehlt es sich, die KI aktiv in einen Verbesserungsprozess
einzubeziehen.

Dabei kdnnen Anwender gezielt Riickfragen stellen oder Optimierungen anfordern. Typische
Folgeanweisungen sind beispielsweise die Verbesserung der Performance, die Erweiterung
von Fehlermeldungen oder die Anpassung der Software an neue Datentypen. Ebenso sinnvoll
ist es, die KI um alternative Losungsansétze zu bitten. Dadurch entstehen haufig robustere
und besser skalierbare Softwarestrukturen.

Wichtig ist es, die KI regelmiBig um Erlduterungen des generierten Codes zu bitten. Dieser
Schritt dient nicht nur der Qualitétssicherung, sondern auch dem Aufbau eines besseren
Verstédndnisses fiir die zugrunde liegende Logik. Anwender konnen dadurch fundierter
entscheiden, welche Teile des Codes ibernommen, angepasst oder verworfen werden sollten.

Ein weiterer hilfreicher Bestandteil des Entwicklungsdialogs ist die Integration realer
Testdaten. Erst durch den Einsatz praxisnaher Datensétze lassen sich viele Schwachstellen
erkennen, die in theoretischen Tests verborgen bleiben. KI-Systeme kénnen anschlieBend
gezielt auf diese Probleme reagieren und den Code entsprechend optimieren.

In komplexeren Analyseprojekten zeigt sich hiufig, dass neue fachliche Anforderungen erst
wiéhrend der Nutzung entstehen. Bewertungsmodelle miissen angepasst, Kennzahlen erweitert
oder Entscheidungsregeln verfeinert werden. Vibe Coding ermdoglicht es, solche Anpassungen
ohne vollstindige Neuentwicklung umzusetzen. Stattdessen wird der bestehende Code
schrittweise weiterentwickelt.

Langfristig entsteht auf diese Weise ein lernender Entwicklungsprozess. Prompts,
Codeversionen und Qualitdtspriifungen entwickeln sich parallel weiter. Software wird
dadurch nicht mehr als statisches Produkt verstanden, sondern als dynamisches System, das
sich kontinuierlich an neue Anforderungen anpassen lisst.

Beispiel fir einen strukturierten Vibe-Coding-Prompt

Eine bewéhrte Formulierung kann folgendermallen aussehen:

,Ich mochte ein Analyse-Notebook entwickeln, das strukturierte Unternehmensdaten aus
Excel-Dateien einliest und daraus automatisch betriebswirtschaftliche Kennzahlen berechnet.
Ziel ist die Erstellung einer nachvollziehbaren Entscheidungsgrundlage fiir Analyse- und
Bewertungszwecke. Das Programm soll Eingabedaten priifen, Kennzahlen berechnen,
Ergebnisse visualisieren und optional ein Bewertungssystem integrieren. Bitte nutze Python
mit Pandas' und Visualisierungsbibliotheken. Der Code soll modular aufgebaut, kommentiert

' Pandas ist eine weit verbreitete Open-Source-Programmbibliothek fiir die Programmiersprache Python. Sie
wird vor allem zur Verarbeitung, Analyse und Strukturierung von Daten verwendet. Mit Pandas lassen sich
beispielsweise Excel-Tabellen einlesen, Datensitze filtern, Kennzahlen berechnen oder Zeitreihen analysieren.



und testbar sein. Erkldre mir den Aufbau des Codes verstiandlich und schlage Verbesserungen
«2
VOr.

Warum strukturierte Prompts besonders bei komplexen
Analyseprojekten wichtig sind

In vielen datengetriebenen Anwendungen liegt der eigentliche Mehrwert nicht im
Programmcode selbst, sondern in der zugrunde liegenden Bewertungslogik. Moderne
Analyseprojekte zeigen, dass Softwareentwicklung zunehmend aus fachlicher Modellierung
entsteht. Der Anwender definiert Entscheidungsstrukturen, wéhrend die KI diese in
technische Ablédufe iibersetzt.

Dieser Ansatz ermoglicht es, komplexe Analyse-Workflows modular aufzubauen, Daten
automatisiert auszuwerten und Entscheidungsprozesse transparenter zu gestalten. Solche
Anwendungen verdeutlichen exemplarisch, wie Vibe Coding Fachwissen und
Softwareentwicklung miteinander verbindet.

Typische Fehler beim Einsatz von Vibe Coding

Trotz der grolen Potenziale entstehen in der Praxis hdufig Probleme durch unklare
Anforderungen oder fehlende Qualitdtskontrollen. Besonders riskant ist es, KI-generierten
Code ungepriift zu ibernehmen. Viele Fehler entstehen nicht durch falsche Programmierung,
sondern durch missverstdndliche Zieldefinitionen.

Auch iiberladene Prompts konnen problematisch sein. Komplexe Projekte lassen sich meist
besser in mehreren Entwicklungsschritten umsetzen. Eine modulare Vorgehensweise
erleichtert dabei die Fehlersuche und verbessert die Wartbarkeit der Software.

Empfehlung fir den praktischen Einstieg

Wer Vibe Coding nutzen mdochte, sollte mit iberschaubaren Projekten beginnen und die
Struktur seiner Prompts schrittweise verfeinern. Mit zunehmender Erfahrung entwickelt sich
meist ein eigener Kommunikationsstil mit KI-Systemen. Dieser Lernprozess ist ein zentraler
Bestandteil moderner Softwareentwicklung.

Gleichzeitig zeigt die Praxis, dass erfolgreiche Vibe-Coding-Projekte hiufig dort entstehen,
wo fachliche Expertise und technische Umsetzung eng miteinander verzahnt werden.
Anwendungen, die Daten analysieren, bewerten oder Entscheidungsprozesse unterstiitzen,
profitieren besonders von dieser Methode.

2 Dies beschreibt in Ansatzen mein Due Diligence — Projekt, das sich dieser Codierung und des
beschriebenen Prozesses bedient.



Praxisbox: So lasst man sich KI-Code verstandlich
erklaren

Eine der groBten Stirken moderner KI-Systeme liegt darin, dass sie nicht nur Code erzeugen,
sondern auch komplexe Zusammenhénge verstindlich erkldren konnen. Gerade Anwender
ohne tiefgehende Programmiererfahrung profitieren davon, wenn sie KI gezielt in einen
sogenannten Instruktormodus versetzen.

Der Instruktormodus bedeutet, dass die KI nicht nur Ergebnisse liefert, sondern Schritt fiir
Schritt erldutert, wie Code funktioniert, warum bestimmte Losungswege gewéhlt wurden und
welche Alternativen moglich wéren. Dadurch wird KI zu einem Lern- und
Entwicklungspartner und nicht nur zu einem automatischen Codegenerator.

In der Praxis ist dieser Ansatz besonders hilfreich, wenn man neue Analyse- oder
Automatisierungsprojekte entwickelt. Anwender kdnnen auf diese Weise die Funktionsweise
ihrer Software nachvollziehen und langfristig besser anpassen oder erweitern.

Beispiel-Prompt im Instruktormodus

,,Erkldre mir bitte den erzeugten Code so, als hitte ich nur grundlegende
Programmierkenntnisse. Beschreibe Schritt fiir Schritt:

e Welche Funktion jeder Codeabschnitt erfiillt
e Warum diese Losung gewihlt wurde
e Welche Alternativen moglich wiren
e Welche Risiken oder Schwachstellen existieren
e Wie ich den Code spéter selbst anpassen kann
Nutze einfache Sprache und verzichte auf unnoétige Fachbegriffe.*

Wann der Instruktormodus besonders sinnvoll ist
Der Instruktormodus eignet sich besonders bei:

o Entwicklung neuer Analysemodelle

e Automatisierung betrieblicher Prozesse

e Aufbau modularer Softwarelosungen

« Ubernahme fremder oder KI-generierter Codes
e Schulungs- und Lernprojekten

Gerade in datengetriebenen Anwendungen zeigt sich, dass ein tieferes Verstindnis der
Berechnungslogik oft wichtiger ist als die reine technische Umsetzung.



Didaktischer Zusatznutzen
Viele Anwender berichten, dass sie durch den Instruktormodus nicht nur Software schneller

entwickeln, sondern gleichzeitig ihre Programmierkenntnisse erweitern. KI wird dadurch zu
einem interaktiven Lehrsystem, das komplexe Zusammenhénge anschaulich erklért.

Praxisbox: Qualitatscheck fiir KI-generierten Code

Priifliste fiir sichere und professionelle Anwendungen
KI kann in kiirzester Zeit funktionsfihigen Code erzeugen. Dennoch ersetzt dies keine
systematische Qualititspriifung. Gerade in Anwendungen mit finanziellen, strategischen oder

sicherheitsrelevanten Auswirkungen ist eine strukturierte Kontrolle unverzichtbar.

Der folgende Qualitdtscheck hat sich in der Praxis als besonders hilfreich erwiesen.

1. Plausibilititspriifung der Ergebnisse

Zunéchst sollte liberpriift werden, ob die Ergebnisse logisch und fachlich nachvollziehbar
sind. Stimmen Kennzahlen mit bekannten Referenzwerten iiberein? Reagiert das Programm
korrekt auf Extremwerte oder unvollstindige Daten?

Gerade bei Bewertungs- oder Analysemodellen konnen kleine Fehler in der Berechnungslogik
erhebliche Auswirkungen auf Entscheidungen haben.

2. Uberpriifung der Datenverarbeitung

Ein héaufiger Fehler entsteht durch unzureichende Datenvalidierung. Software sollte erkennen
konnen, wenn Eingabedaten fehlen, fehlerhaft formatiert sind oder nicht den erwarteten
Strukturen entsprechen.

Empfehlenswert sind automatische Priifmechanismen, die fehlerhafte Datensdtze markieren
oder alternative Berechnungswege vorschlagen.

3. Nachvollziehbarkeit der Berechnungslogik

Code sollte nicht nur funktionieren, sondern auch verstdndlich dokumentiert sein. Jeder
zentrale Berechnungsschritt sollte kommentiert werden. Anwender miissen nachvollziehen
konnen, wie Ergebnisse entstehen.



Diese Transparenz ist besonders wichtig in Analyseprojekten, bei denen Software als
Entscheidungsgrundlage dient.

4. Sicherheitspriifung

KI-generierter Code kann ungewollte Sicherheitsliicken enthalten. Dazu gehdren unsichere
Datenzugriffe, ungeschiitzte Schnittstellen oder fehlende Zugriffskontrollen. Vor allem
Anwendungen mit sensiblen Daten sollten deshalb einer zusitzlichen Sicherheitspriifung
unterzogen werden.

5. Performance und Skalierbarkeit

Code, der mit kleinen Datensétzen funktioniert, kann bei groBeren Datenmengen schnell an
Leistungsgrenzen stoflen. Eine Performanceanalyse hilft dabei, Engpisse friihzeitig zu
erkennen und zu beheben.

6. Modularitit und Wartbarkeit

Nachhaltige Software sollte modular aufgebaut sein. Funktionen sollten klar getrennt und
erweiterbar bleiben. Dies erleichtert spatere Anpassungen und reduziert Wartungskosten.

7. Dokumentation und Versionskontrolle

Gerade bei KI-gestiitzten Projekten ist es wichtig, Anderungen nachvollziehbar zu
dokumentieren. Versionskontrollsysteme und strukturierte Entwicklungsprotokolle helfen,
Fehlerquellen zu identifizieren und Entwicklungsfortschritte zu sichern.

Warum Qualitatspriifungen beim Vibe Coding besonders
wichtig sind
Vibe Coding beschleunigt Entwicklungsprozesse erheblich. Gleichzeitig steigt jedoch das

Risiko, dass iiberzeugend wirkender Code ungepriift ibernommen wird. KI kann sehr
plausible Losungen erzeugen, die dennoch fachlich oder technisch fehlerhaft sind.

Professionelle Anwendungen entstehen deshalb immer aus der Kombination von KI-
Unterstiitzung und menschlicher Qualitdtskontrolle.



Visuelle Ubersicht

Vibe Coding Workflow — Zusammenarbeit zwischen
Mensch, KI und Qualititssicherung

1
MENSCH / EXPERTE |

(Fachlogik & Zieldefinition)|

Anforderungen, Ziele, Regeln
v

PROMPT-ARCHITEKTUR
Strukturierte Beschreibung
* Ziel & Nutzen
* Funktionen
* Datenquellen
* Qualitatsanforderungen

Dialog & Iteration
v

1
KI-SYSTEM |

Code- und Modellgenerator |
* Softwarearchitektur

* Datenverarbeitung

* Analysemodelle

* Dokumentation

Generierter Code / Modelle
v

TEST & QUALITATSCHECK
* Plausibilitatspriifung
* Sicherheitsanalyse
* Performance-Tests
e Validierung mit Echtdaten

Feedback & Optimierung
v

ITERATIVE VERBESSERUNG
Anpassung von Prompts,
Logik und Architektur

v

PRODUKTIVE ANWENDUNG
Automatisierte Analysen
Entscheidungsunterstiitzung
Reporting & Visualisierung




10

So lesen Sie den Workflow

Der dargestellte Prozess zeigt, dass Vibe Coding kein linearer Entwicklungsweg ist, sondern
ein Kreislauf aus Planung, Umsetzung und Qualititskontrolle.

1. Der Mensch bleibt der strategische Mittelpunkt
Der Entwicklungsprozess beginnt immer mit fachlicher Zieldefinition. Der Anwender
entscheidet, welches Problem geldst werden soll und welche Bewertungslogiken oder

Entscheidungsregeln relevant sind.

Dieser Schritt ist entscheidend, weil KI zwar technische Losungen generieren kann, aber
keine eigenstidndigen fachlichen Zielsetzungen entwickelt.

2. Die Prompt-Architektur iibersetzt Fachwissen in Softwarelogik
Prompts fungieren als Schnittstelle zwischen menschlicher Problemdefinition und technischer
Umsetzung. Je strukturierter Anforderungen formuliert werden, desto stabiler und

nachvollziehbarer wird die Softwarearchitektur.

In komplexeren Analyseprojekten entsteht hier oft bereits die eigentliche Modellstruktur der
Anwendung.

3. KI fungiert als Entwicklungs- und Umsetzungspartner

Die KI tibernimmt die technische Umsetzung. Dazu gehoren Programmierung,
Datenverarbeitung, Visualisierung und teilweise sogar Dokumentation.

Dabei entstehen hdufig mehrere Losungsvorschlage, die anschlieBend bewertet und optimiert
werden konnen.

4. Qualitiatssicherung verhindert Fehlentscheidungen

Der Qualitdtscheck bildet eine zentrale Kontrollinstanz. Gerade bei datengetriebenen
Anwendungen ist es entscheidend, dass Berechnungsmodelle fachlich plausibel und technisch
stabil sind.

In professionellen Anwendungen erfolgt diese Priifung meist anhand realer Datensétze und
Vergleichsmodelle.



11

5. Iteration ist der Kern von Vibe Coding
Vibe Coding lebt von kontinuierlicher Verbesserung. Neue Anforderungen, erkannte Fehler

oder optimierte Bewertungslogiken flieBen direkt in neue Promptversionen ein. Dadurch
entwickelt sich Software Schritt fiir Schritt weiter.

6. Ergebnis: Automatisierte und skalierbare Anwendungen

Am Ende entstehen Anwendungen, die komplexe Analysen automatisieren,
Entscheidungsprozesse unterstiitzen oder Geschéftsprozesse effizienter gestalten konnen.

Quellen:

Grundlagen:

https://www.geeksforgeeks.org/techtips/what-is-vibe-coding/

1. farXiv — LLMs als Programmierassistenten\
https://arxiv.org/abs/2302.06590

Empirische Studie zu Produktivitatsgewinnen durch Kl-gestitztes
Programmieren‘
2. OpenAI Agenten, Tool Use & Function Calllng\

Technlsche Gru ndlage fur iterative Workflows.

3. |Anthropic — Human-Al Collaboration & Claude‘
https://www.anthropic.com/research

Forschung zu Mensch-KI- Zusammenarbeit|

4. Harvard Business Review — Kl verandert Wlssensarbelt\ (ersetzt)

Analyse des Wandels in Wissensarbeit durch GenAI|

5. McKinsey & Company Generative AI in Software Englneerlng‘

Produktivitatsanalysen fir Entwickler.




